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Abstract
We present an all-temperature magnon formalism for ferromagnetic solids. To our knowledge,
this is the first time that all-temperature spin statistics have been calculated. The general
impression up to now is that the magnon formalism breaks down at the Curie point as it
introduces a series expansion and unphysical states. Our treatment is based on an accurate
quantum mechanical representation of the Holstein–Primakoff transformation. To achieve this
end, we introduce the ‘Kubo operator’. The treatment is valid for all 14 types of Bravais
lattices, and not limited to simple cubic unit cells. In the present work, we carry out a
zeroth-order treatment involving all possible spin states, and leaving out all unphysical states. In
a subsequent paper we will show that the perturbed energy values are very different, but the
magnetic properties undergo only small modifications from the zeroth-order results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A reliable theoretical treatment of ferromagnetic (FM) solids
is based on the so-called magnon formalism that represents the
standard quantum statistical field theory of these systems. The
magnon theory, however, has its own limitations. The theory is
based upon the Holstein–Primakoff transformation [1] which
contains a square root term and its series expansion loses
rapid convergence with the rise in temperature. It is also
associated with infinitely many bosonic states, most of which
are unphysical, and it breaks down as soon as the temperature
crosses the Curie point. The saving grace for the ferromagnetic
spin wave approximation is that the ground state of the
Heisenberg model is still treated exactly, because the presumed
vacuum is in fact the ground state configuration. The classical
behavior is reached at a much higher temperature where
zJ/kBT � 1, z being the number of nearest neighbors and
J the exchange coupling constant between two adjacent units.

A large body of work has been carried out by different
authors on this subject, but these are mostly on the
Heisenberg one-dimensional chain and the Ising model [2].
Although popular in the literature, the latter models involve
Hamiltonian operators that are obtained by truncating the
full spin Hamiltonian rather drastically, thereby achieving
mathematical simplicity [3a, 3b, 3c, 3d, 3e]. To get

a better solution at different temperatures, some authors
have resorted to numerical calculations on extremely small
systems [4a, 4b, 4c, 4d, 4e]. Several authors have also
investigated the possibility of bound states of magnons that
are revealed at the Brillouin zone boundary, when the
crystal has anisotropy [5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i].
Reser and Melnikov investigated the problem of temperature
dependence of strong ferromagnets using dynamic spin-
fluctuation theory [5j]. Using the polarized neutron diffraction
method Cable has experimentally established that there exits
an asymmetry in the unpaired spin density of Ni in eg and
t2g subbands [2i]. However, a completely novel approach is
needed to understand ferromagnetism in a three-dimensional
crystal at all ranges of temperature. Accurate spin state
statistics are required for this purpose.

There is an asymmetry involved in the conventional
treatment of magnons, where the statistical mechanical
averaging is done by assuming one-magnon states [6] and then
the effect of magnon–magnon interaction is evaluated. In the
absence of a magnetic field, there is no preferred z-axis. The
ferromagnetic domain structure and the random distribution
of the spin axes of the domains in the absence of a magnetic
field are well known. A FM microcrystal must have the same
internal energy per unit species in the absence of a field when
it is inverted, or rotated in any other orientation. This implies
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that for a given z-axis, a specific n-magnon state and the
complementary (N − n)-magnon state must have the same
energy. This is not so in the conventional one-magnon picture
where one uses a specific z-axis, and differently oriented
domains would have different energy per unit species. In
this series of works we pay special attention to retaining the
orientational symmetry in the field-free case.

We put forward a magnon treatment of ferromagnetic
solids avoiding the series expansion of a square root, and using
the magnon–magnon interaction in an exact form. Moreover,
we carry out each sum over the finite number of physical
magnon states, and not over an infinite number. In this way
we avoid the unphysical states, and the analysis becomes valid
for all ranges of temperature. The theory we describe deals in
principle with the full magnon–magnon interaction, although
its effect will be considered here up to the first order as the
higher-order contributions are estimated to be quite small. We
show that the energy and the population distribution of the
various magnon states exceptionally differ from those in the
conventional one-magnon picture, but the final expressions
for the physical properties remain comparable. Besides, we
interpret the so-called molecular field and describe it as a
function of temperature. The present paper (paper I) gives
the mathematical basis of our treatment and the zeroth-order
results. In a subsequent article (paper II, [7]) we discuss the
perturbed system and compare our analysis with that of Dyson
for a temperature close to the Curie point. The concept of a spin
wave is not necessarily limited to a low temperature domain,
and field theory needs to be carefully implemented while the
coupling is not so weak.

2. Hamiltonian

2.1. Traditional Hamiltonian

The simplest Hamiltonian of interest in the presence of an
external magnetic field of strength B is the so-called nearest-
neighbor Heisenberg exchange Hamiltonian described by

H = −gμB B
∑

j

S j z −
∑

j,ε,δ

JεS j · S j+δε
(1)

where g is gyromagnetic ratio, μB(=e0h̄/2mec) is the Bohr
magneton, j indicates the lattice sites, and the vector δε is the
connectivity vector for two nearest neighbors in the ε direction
as shown in figure 1. The constant Jε is known as the exchange
coupling constant along direction ε, and S j is the spin angular
momentum operator at site j . In practice, the Hamiltonian for
ferromagnetic solids is written in terms of Bose operators of
type a j and a†

j that are obtained from spin operators (S+
j and

S−
j ) by the Holstein–Primakoff transformation [1]

S+
j = (2S)1/2 f (n̂ j )a j , S−

j = (2S)1/2a†
j f (n̂ j). (2)

In the above, f (n̂ j ) = (1 − n̂ j/2S)1/2 and n̂ j = a†
j a j . The

Holstein–Primakoff transformation is nonlinear and has not
traditionally been amenable to exact calculations. In particular,
Sjz = S − n̂ j , such that n̂ j is the number operator for the
spin excitations at site j . The operators a j and a†

j are the

Figure 1. The connectivity vector (δ) for nearest neighbors along the
axes of an orthogonal crystal.

corresponding destruction and creation operators for the spin
excitations. This leads to the exchange Hamiltonian

H = −gμB B N S − 2N S2
∑

ε

Jε

+
{

gμB B + 4S

( ∑

ε

Jε

)}∑

j

n̂ j

− S
∑

j

∑

ε

Jε

∑

δε

{ f (n̂ j )a j a
†
j+δε

f (n̂ j+δε
)

+ a†
j f (n̂ j ) f (n̂ j+δε

)a j+δε
}

−
∑

j

∑

ε

Jε

∑

δε

n̂ j n̂ j+δε
(3)

where N is the total number of lattice sites.

2.2. Limitations

Fourier transformations of the operators a j and a†
j give magnon

operators bk and b†
k :

bk = N−1/2
∑

j

eik·r j a j ,

b†
k = N−1/2

∑

j

e−ik·r j a†
j .

(4)

Since the latter are also Bose operators, they are associated
with an infinite number of states, most of which are unphysical.
Any Hamiltonian written in terms of the magnon operators
would involve the problem of mixing of these unphysical states
in the treatment. The actual problem starts from the site
operator a†

j . While S−
j | − S〉 = 0 that indicates a maximum

of 2S excitations per site, a†
j |n j = 2S〉 �= 0. In reality, a

finite number of states should be involved in expression (3),
because f (n̂ j )|n j = 2S〉 = 0. The number of spin states is
(2S + 1)N . This requires an accurate handling of the operator
f (n̂ j ) in equation (3). Another difficulty arises from this
requirement. It is normal to expand the operator f (n̂ j ) as
a square root. This expansion is infinitely large and needs
to be truncated in practice. The truncation works only if
n j/2S � 1, that is, at an extremely low temperature. As a
matter of fact, the conventional magnon treatment is known
to break down as soon as the temperature crosses the Curie
point (FM) [6], because of the increasing truncation error
and a large population of the unphysical states at a higher

2
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Table 1. The number of states for small N values. Not all the
magnon states are physically acceptable.

S = 1/2 S = 1 S = 3/2

N
Site
states

Magnon
states

Site
states

Magnon
states

Site
states

Magnon
states

1 2 2 3 3 4 4
2 4 6 9 15 16 28
3 8 20 27 84 64 220
4 16 70 81 495 256 1820

temperature. In passing, we mention that Bloch has shown
magnon renormalization to be necessary near the Curie point
in ferromagnets [8].

2.3. Physical states

The site spin states are written as
∏

j |n j 〉 such that
∑

j n j =
ntot, 0 � n j � 2S for each j . There are Nk values, and all the
k states are a priori equally probable. It is easy to show that∑

k nk = ∑
j nj and the nk values are limited as

nk = 0, 1, . . . , ntot (5)

for all k subject to the constraint that the total number of
excitations is less than or equal to 2N S:

ntot =
∑

k

nk = 0, 1, . . . , 2N S. (6)

The above consideration generates a total of Nmag =
(2S+1)N CN magnon states. Basically this means that (2S +1)N
primitive magnon functions (site states) are distributed among
N magnon modes. The number Nmag is large yet finite. The
numbers of primitive (site) states and magnon states are given
for various S in table 1.

However, not all of the magnon states are physically
acceptable, as (2S + 1)N site states can linearly combine
to form the same number of orthonormal magnon states.
This hints that the nk values should be limited as nk =
0, 1, . . . , min[2S, ntot]. In appendix A we show that the
physically acceptable magnon states can be formed from states
like |nk〉 with 0 � nk � 2S.

2.4. The Kubo operator

In order to avoid the truncation error by treating the operator
f (n̂ j ) in an exact manner, we rediscover a technique that was
employed by Kubo [9] but has remained largely overlooked.
Kubo showed that a finite expression of the function f (n j) can
be obtained by expanding it as a polynomial of degree m:

f (n j ) ≡ (1 − n j/2S)1/2 = Pm(n j ), (7)

that is to be valid for n j = 0, 1, . . . , 2S. This is uniquely
satisfied if m = 2S, that is

f (n j ) ≡ P(2S)(n j) =
2S∑

i=0

fi n
i
j . (8)

The coefficients fi were determined for different S values by
Kubo [9a]. Some of the Kubo coefficients are given in table 2.

Since the eigenvalue of n̂ is n, one can use the operator
equivalence

f (n̂ j ) =
2S∑

i=0

fi n̂
i
j . (9)

This expression strictly limits the accessible primitive states to
|n j = 0〉, . . . , |n j = 2S〉, as

2S∑

i=0

fi n̂
i
j |n j = 2S〉 = f (2S)|2S〉 = 0. (10)

Consequently, the theoretical treatment would be limited to
(2S + 1)N primitive microstates. Henceforth in this work the
operators f (n̂ j ) will called Kubo operators.

2.5. Physically relevant Hamiltonian

We consider a crystal where each species in the bulk has z
nearest neighbors. Because of translational symmetry J̄k−l =
J̄l−k , where J̄k = z−1

∑
ε Jεγkε, and γkε = ∑

δε
eik·δε . We

will use the quantities ωk = ω′
0 − ω′

k, ω
′
0 = 2zS J̄ , J̄ =

2z−1
∑

ε Jε, and ω′
k = 2zS J̄k = ω′

−k . When the expression
for the Kubo operator is used in equation (3) and the site
boson operators are converted into the magnon operators, the
Hamiltonian for a ferromagnet appears as H = H (0) +
H ′ where the zeroth-order operator is for ‘non-interacting’
magnons,

H (0) = −gμB N SB − z N S2 J̄ + gμB B
∑

k

n̂k +
∑

k

n̂kωk,

(11)
and the magnon–magnon interaction constitutes the perturba-
tion

H ′ = −
∑

k,l,m

{
f1

N
(ω′

k + ω′
l) + 1

2N S
ω′

k−l

}
b†

kb†
mblbk−l+m

− 1

2

2S∑

p,q=1

f p fq

N p+q

∑

k1,...,kp
l1,...,lq

∑

k′
1,...,k

′
p

l′1,...,l
′
q

×
∑

m

{ω′
m−∑

(k−l)b
†
k1

bl1 · · · b†
kp

blp bm

× b†
m−∑

(k−l)−∑
(k′−l′)b

†
k′

1
bl′1 · · · b†

k′
q
bl′q

+ ω′
m+∑

(k−l′)b
†
mb†

k1
bl1 · · · b†

kp
blp b†

k′
1
bl′1 · · ·

× b†
k′

q
bl′q bm+∑

(k−l)+∑
(k′−l′)}. (12)

A comparison with the traditional Hamiltonian is due here.
The conventional treatment yields the same H (0) but H ′

conv as
an expansion up to, say, the biquadratic terms [6]:

H ′
conv = 1

4N S

∑

k,l,m

(ω′
k + ω′

l − 2ω′
k−l)b

†
kb†

mblbk−l+m. (13)

Because of the square root expansion, the coefficient −1/4S
takes the place of f1. Other higher-order terms similarly occur
with the appropriate coefficients calculated from the square
root expansion, but these are traditionally neglected. The

3
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Table 2. Kubo coefficients.

S f0 f1 f2 f3

1/2 1 −1
1 1 −(3/2 − √

2) −(
√

2 − 1)/2
3/2 1 −(11 + 3

√
3 − 6

√
6)/6 (6 + 4

√
3 − 5

√
6)/6 (−1 − √

3 + √
6)/6

conventional treatment contains an infinity of orders of b†b. It
is transparent that the operator H ′ in equation (12) contains
spin wave coupling contributions only up to 4S biquadratic
terms. The perturbation H ′ contains both diagonal and off-
diagonal terms. The diagonal terms give rise to the first-order
energy correction.

The diagonal terms in the conventional Hamiltonian have
been considered in a self-consistent formalism by Dyson [10].
Dyson, however, used non-orthogonal basic states that are built
from the effect of a†

j f (n̂ j ) operators. At low temperatures,
the only important basic states are approximately orthogonal
to each other, and the effective Hamiltonian becomes almost
diagonal. Dyson found that the residual interaction is only
dynamical which makes the situation superficially simpler.
He worked with a modified Hamiltonian in the ‘ideal’
Hilbert space. The off-diagonal terms contribute to higher
orders. The higher-order energy corrections were estimated
by Dyson. His treatment generated a complete description of
the thermodynamic properties of the system, but in the low
temperature region, around and below the Curie point. Our
objective here is to describe the thermodynamic properties at
all ranges of temperature.

2.6. Energy contributions

The zeroth-order energy for a specific magnon state is given by

E (0) = −gμB N SB − z N S2 J̄ + gμB B
∑

k

nk +
∑

k

nkωk.

(14)
The magnon–magnon interaction terms consist of diagonal as
well as off-diagonal contributions. The diagonal contributions
contribute to the first-order energy correction, while the off-
diagonal terms can be used to determine the higher-order
corrections to energy. The higher-order contributions are at
most of order 1/N . Therefore, the higher-order corrections
can be safely neglected as N → ∞, and the total energy
will be mainly composed of the zeroth-order and the first-order
contributions.

Henceforth in this work we will write n instead of ntot.
It can be easily shown that for B = 0 and for the ‘site

states’ given by (A.1) and (A.2) for S = 1/2 in appendix A,

〈H 〉n = 〈H 〉N−n = −z N J̄ S2 + n(N − n)

N
ω′

0

− 1

N

∑

k �=0

∣∣∣∣
n∑

s=1

e−ik·s
∣∣∣∣
2

ω′
k. (15)

That is, in the absence of an external magnetic field, the energy
corresponding to the states with n and (N − n) site excitations
should be the same, thereby demonstrating that there is no
preference for the z-axis.

A difference between 〈H 〉n and 〈H 〉N−n arises when
approximate ‘magnon states’ are chosen. This is for two
reasons. Firstly, there are different numbers of unphysical
states involved in the chosen magnon basic states n and (N−n)

as discussed in appendix A. Secondly, the composite state
obtained from the n-magnon state after inverting the z-axis is
different from the (N − n)-magnon state with the normal z-
axis. The linear combination coefficients are different, causing
a slight difference in energy.

3. Crystal characteristics

The structural characteristics of a single crystal are briefly
reviewed here so that the subsequent theoretical formalism
remains valid for all Bravais lattices. In a (three-dimensional)
solid, three orthogonal axes can be chosen. The first axis (1)
by default has two nearest neighbors (z1 = 2) along one
direction (ε1). The second axis (2) forms a plane, and
there can be z2 nearest neighbors along z2/2 directions
(ε2, . . . , ε1+z2/2) with equal coupling constants (J2 = · · · =
J1+z2/2). The third axis (3) can have z3 nearest neighbors along
z3/2 directions (ε2+z2/2, . . . , ε1+z2/2+z3/2) with equal coupling
constants (J2+z2/2 = · · · = J1+z2/2+z3/2). The total number
of nearest neighbors is written as z = z1 + z2 + z3. A list
of nearest-neighbor directions and the coupling constants for
14 Bravais lattices is given in table 3. The vectors connecting
nearest neighbors are written as δε whereas a1, a2 and a3

denote the lattice constants. The magnon wave vectors along
each axis in the reciprocal lattice are to be written as

ki = mi

Ni
bi , for mi = − Ni

2
+ 1, . . . ,

Ni

2
, (16)

where b1, b2 and b3 are reciprocal lattice vectors. There are a
total of N unit cells, and N1, N2 and N3 are the number of cells
along the reciprocal axes. Obviously, N = N1 N2 N3 = N̄3.
The scalar product ki ·δε gives rise to the familiar 2πmi/Ni ai

term because the nearest-neighbor vectors are merely linear
combinations of the primitive lattice vectors. The distribution
of magnon wave vectors is just like that for a free-electron
Fermi gas. This will influence the form of our subsequent
results.

For a three-dimensional crystal, the total number of
excitations n = ∑

k nk is written as

n =
∫

d3m N(m) (17)

where N(m) is defined by N(m) = ∑n
i=1 δ3(m − mi ). At

any specific point m in the reciprocal lattice there can be a
maximum of 2S magnons. We notice that N(m) = n/N . The
characteristics described here will remain valid for the present
work, and also for the subsequent papers.

4
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Table 3. Bravais lattice characteristics that are necessary for the present treatment.

(Number of
nearest neighbors)
Bravais lattice

(Nearest-
neighbor directions)
coupling constants

∑
ε Jε cos k · δε

I. (z = 6) (ε1, ε2, ε3)
Cubic P J1 = J2 = J3 J1 cos(2πm1/N1) + J2 cos(2πm2/N2) + J3 cos(2πm3/N3)
Tetragonal P J1 = J2 �= J3

Orthorhombic P J1 �= J2 �= J3

Triclinic P J1 �= J2 �= J3

Monoclinic P with
β ∼ 90◦

J1 �= J2 �= J3

Trigonal R with
α = β = γ ∼ 90◦

J1 = J2 = J3

Orthorhombic C J1 = J2 �= J3

Monoclinic C with
β ∼ 90◦

J1 = J2 �= J3

II. (z = 8) (ε1 − ε4)
Cubic I J1 = J2 = J3 = J4 J1[cos(2πm1/N1) + cos(2πm2/N2) + cos(2πm3/N3)

+ cos 2π(−m1/N1 + m2/N2 + m3/N3)]Tetragonal I J1 = J2 = J3 = J4

Orthorhombic I J1 = J2 = J3 = J4

III. (z = 12) (ε1, ε2, ε3 − ε6) J1[cos(2πm1/N1) + cos(2πm2/N2)] + J3[cos(2πm3/N3)
+ cos 2π(−m1/N1 − m2/N2 + m3/N3)] + J5[cos 2π(−m1/N1

+ m3/N3) + cos 2π(−m2/N2 + m3/N3)]
Cubic F J1 = J2 = J3 = J4 = J5 = J6

Orthorhombic F J1 = J2 �= J3 = J4 �= J5 = J6

IV. (z = 12) (ε1, ε2 − ε3, ε4 − ε6)
Hexagonal P J1 = J2 = J3 �= J4 = J5 = J6 J1[cos(2πm1/N1) + cos 2π(m1/N1 + m2/N2)

+ cos(2πm2/N2)] + J4[cos(2πm3/N3) + cos 2π(m3/N3

− m1/N1) + cos 2π(m3/N3 − m1/N1 − m2/N2)]
Trigonal R with
α = β = γ ∼ 120◦

J1 = J2 = J3 �= J4 = J5 = J6

Table 4. The zeroth-order energy expressions ε(0)
n for the different types of Bravais lattice. Here we take M1 = J 1/2

1 m1/N1,
M2 = J 1/2

2 m2/N2 and M3 = J 1/2
3 m3/N3.

Lattice (number of nearest
neighbors) ε(0)

n

Type I (z = 6) 4S
∑

k nk
∑∞

p=1
(−1)p+1(2π)2p

(2 p)!
[

1

J p−1
1

M2 p
1 + 1

J p−1
2

M2 p
2 + 1

J p−1
3

M2 p
3

]

Type II (z = 8) 4S
∑

k nk
∑∞

p=1
(−1)p+1(2π)2p

(2 p)!
1

J p−1 [M2 p
1 + M2 p

2 + M2 p
3 + (M2 + M3 − M1)

2 p]
Type III (z = 12) 4S

∑
k nk

∑∞
p=1

(−1)p+1(2π)2p

(2 p)! ⊗
[

J1

(
M2p

1
J p

1
+ M2p

2
J p

2

)
+ J3

{
M2p

3
J p

3
+

(
M3√

J3
− M1√

J1
− M2√

J2

)2 p}

+ J5

{(
M3√

J3
− M1√

J1

)2 p +
(

M3√
J3

− M2√
J2

)2 p}]

Type IV (z = 12) 4S
∑

k nk
∑∞

p=1
(−1)p+1(2π)2p

(2 p)! ⊗
[

J1

{
M2p

1
J p

1
+

(
M1√

J1
+ M2√

J 2

)2 p + M2p
2

J p
2

}
+ J4

{
M2p

3
J p

3
+

(
M3√

J3
− M1√

J1

)2 p

+
(

M3√
J3

− M1√
J1

− M2√
J2

)2 p}]

4. The zeroth-order treatment

The standard magnon treatment basically relies on the
independent magnon picture with ωk as the zeroth-order one-
magnon energy, for an infinite number of independent magnons
of each mode. This is normally updated by considering
the magnon–magnon interaction. In contrast, the present
analysis deals with n-magnon states where n varies from 0 to
2N S. The zeroth-order energy of each microstate, as given in
equation (14), can be written as

E (0)
n = −gμB B(N S − n) − z N S2 J̄ + ε(0)

n (18)

where

ε(0)
n = 4S

∫
d3m N(m)

∑

ε

Jε

{
1 − cos

( ∑

i=1,2,3

2πmiδεi

Ni δi

)}

(19)

where δεi are the components of δε along the primitive lattice
vectors δi ’s.

We consider an arbitrary brick-like shape such that N1, N2

and N3 can all be different. However, the finally calculated
bulk properties need to be shape independent. The average
of ε(0)

n can be correctly written as ε̄(0)
n = nω′

0 when the
integral in (19) is carried out with variables mx , m y and mz .
We make use of the quantities Mi = J 1/2

i mi/Ni , i = 1,
2, 3. This yields analytical expressions for the ε(0)

n values
that are given in table 4, and that satisfy the condition ε(0)

n +
ε

(0)
2N S−n(corresponding) = Nω′

0. Therefore,

max ε
(0)

2N S−n(corresponding) = Nω′
0 − min ε(0)

n ,

min ε
(0)
2N S−n(corresponding) = Nω′

0 − max ε(0)
n .

(20)
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Figure 2. (a) The probability functions WS(n, N) for S = 1/2 (Wmax = 1.85 × 105), 1 (Wmax = 3.77 × 108), and 3/2 (Wmax = 8.70 × 1010)
and N = 20. (b) The probability functions ln W1/2(n, N) for N = 10, 20, 30, 40, 50, 60.

The minimum value for ε(0)
n for n < N S can be determined by

considering that the m-space is tightly filled around the origin,
which implies

∫
d3m = 4π N

(J1 J2 J3)1/2

∫ M∗

0
dM M2 = n

2S
. (21)

One obtains M∗ = (3n/8π SN)1/3(J1 J2 J3)
1/6. The minimum

values are given in table 5a for all Bravais lattices. For the
maximum values, we consider the corners of the brick shape
in the reciprocal lattice to be tightly filled. After some rather
detailed calculations, we find the maximum ε(0)

n values for
J1 ≈ J2 ≈ J3. These are shown in table 5b.

At a relatively low temperature, one can resort to the long
wavelength limit by considering that the summation over p in
table 4 is to be replaced only by the p = 1 term. We then
find, for a spherically symmetric distribution in m space, the
following results:

Type I: (For J1/N2
1 = J2/N2

2 = J3/N2
3 = J̄/N̄2)

ω′
0 = 12S J̄ ; J̄ = (J1 + J2 + J3)/3

ε
(0)
n,lt = 2π2ω′

0

3N̄2

∫
d3m N(m)m2

Type II: (For N1 = N2 = N3 = N̄ )

ω′
0 = 16S J̄ ; J̄ = J1

ε
(0)
n,lt = π2ω′

0

N̄2

∫
d3m N(m)m2

Type III: (For N1 = N2 = N3 = N̄ and fcc crystal)

ω′
0 = 24S J̄ ; J̄ = J1

ε
(0)
n,lt = 10π2ω′

0

9N̄2

∫
d3m N(m)m2

Type IV: (For 3N2
1 = 3N2

2 = N2
3 = 32/3 N̄2)

ω′
0 = 24S J̄ ; J̄ = (J1 + J4)/2

ε
(0)
n,lt = 8π2ω′

0

35/3 N̄2

∫
d3m N(m)m2.

(22)

4.1. Probabilities

The population in each microstate is governed by the ratio
J̄/kBT . Only the microstates with the lowest n values have
a sizable population in each. Each state with a relatively large
n would have a negligibly small magnon population at a finite
temperature. Nevertheless, the middle n values have large
numbers of microstates, WS(n, N). The quantity WS(n, N)

is given in appendix B. For N = 20, the variation of WS(n, N)

with different S is shown in figure 2(a). Figure 2(b) shows the
change of WS(n, N) for S = 1/2 with N values. This number
WS(n, N) leads to a typical grand canonical distribution as
discussed in appendix C. Thus the total population in the group
of microstates corresponding to the same n is not necessarily
negligibly small when n is quite large but less than N S.

It is easy to show that in the long wavelength limit, the
minimum and the maximum values of ε(0)

n for a given n are

ε
(0)
min = ε̄

(0)
n,lt u

2/3,

ε(0)
max = ε̄

(0)

n,lt

[1 − (1 − u)5/3]
u

,

(23)

where u is the ratio n/2N S. The quantity ε̄
(0)
n,lt is the average

zeroth-order energy in the long wavelength limit, given by

ε̄
(0)

n,lt = 2π2

5

(
3

4π

)2/3

γ nω′
0 (24)

where γ = 1 for Type I, 3/2 for Type II, 5/3 for Type III and
4/32/3 for Type IV. As u → 0, the minimum and maximum
values tend to 0 and 5

3 ε̄
(0)

n,lt , respectively. As u → 1, ε
(0)

min →
ε(0)

max. For each microstate corresponding to a given n, ε(0)
n

varies in the range ε
(0)
min � ε(0)

n � ε(0)
max. The energy band

diagram for a spin-1/2 system is shown in figure 3.

4.2. Density of states

As there are a large number of microstates for every finite n
value, except when n = 0 and n = 2N S, a description in
terms of the density of states will be more suitable. We first
define a dimensionless variable y such that ε(0)

n = ε̄(0)
n y (or

6
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Table 5a. The zeroth-order minimum energy expressions, Min ε(0)
n , for the different types of Bravais lattice.

Type of Bravais
lattice (number of
nearest neighbors) Min ε(0)

n

Type I (z = 6) 12Sn
∑∞

p=1
(−1)p+1(2π)2p

(2 p+1)!(2 p+3)

[
1

J p−1
1

+ 1

J p−1
2

+ 1

J p−1
3

](
3n

8π N S

)2 p/3
(J1 J2 J3)

p/3

Type II (z = 8) 36Sn J
∑∞

p=1
(−1)p+1(2π)2p

(2 p+1)!(2 p+3)

(
3n

8π N S

)2 p/3

Type III (z = 12) 12Sn
∑∞

p=1
(−1)p+1(2π)2p

(2 p)!(2 p+3)

(
3n

8π N S

)2 p/3
(J1 J2 J3)

p/3 ⊗
{

1
2 p+1

[
1

J p−1
1

+ J1
J p

2
+ 1

J p−1
3

]
+ J5

∑2 p
r=0(−1)r

( 2p
r

)

× 1
(
√

J3)2p−r
1

(
√

J1)r
(r−1)·(r−3)···1

(2 p−r+1)·(2 p−r+3)···(2 p+1)

}

Type IV (z = 12)
∑∞

p=1 2S (−1)p+1(2π)2p

(2 p)! (I1 + I2)

Table 5b. The zeroth-order maximum energy expressions, Max ε(0)
n , for the different types of Bravais lattices. These results are valid for

J1 ≈ J2 ≈ J3.

Type of Bravais
lattice (number of
nearest neighbors) Max ε(0)

n

Type I (z = 6) 2nω′
0 − 12Sn

∑∞
p=1

(−1)p+1(2π)2p

(2 p+1)!(2 p+3)

[
1

J p−1
1

+ 1

J p−1
2

+ 1

J p−1
3

](
3n

8π N S

)2 p/3
(J1 J2 J3)

p/3

Type II (z = 8) 2nω′
0 − 36Sn J

∑∞
p=1

(−1)p+1(2π)2p

(2 p+1)!(2 p+3)

(
3n

8π N S

)2 p/3

Type III (z = 12) 2nω′
0 − 4S

∑∞
p=1 2S (−1)p+1(2π)2p

(2 p)! ⊗
{

3n
2S(2 p+3)(2 p+1)

(
3n

8π N S

)2 p/3
(J1 J2 J3)

p/3
[

1

J p−1
1

+ J1
J p

2
+ 1

J p−1
3

]
+ 2I3

}

Type IV (z = 12) 2nω′
0 − 4S

∑∞
p=1 2S (−1)p+1(2π)2p

(2 p)! ⊗
{

3n
2S(2 p+3)(2 p+1)

(
3n

8π N S

)2 p/3
(J1 J2 J3)

p/3
[

1

J p−1
1

+ J1
J p

2
+ J4

J p
3

]
+ I4 + I5

}

I1 = 6n
(2 p+1)(2 p+3)

(
3n

8π N S

)2 p/3
(J1 J2 J3)

p/3
{

1

J p−1
1

+ J1
J p

2
+ J4

J p−1
3

}

I2 = ∑2 p
r=0(−1)r

( 2p
r

) (
1

2 p+3

)(
3n

8π N S

)2 p/3
3n(J1 J2 J3)

p/3
{

J1
(
√

J1)2p−r
1

(
√

J2)
r

1.3.5···(2 p−r−1).1.3.5···(r−3)

(2 p+1)·(2 p−1)···1 ⊕ J4
(
√

J3)2p−r
1

(
√

J1)r
(r−1).(r−3)···1

(2 p−r+1)·(2 p−r+3)···(2 p+1)

}

I3 = J5
∑2 p

r=0

∑r
r ′=0

( 2p
r

) ( r
r ′

) (
1
2

)2 p−r
1

(
√

J1)r′
1

(
√

J3)
r−r′

3n
8π S(r+3)

(
3n

8π SN

)(r−1)/3
(J1 J2 J3)

(r−1)/6 ⊗ 2π (r ′−1)·(r ′−3)···1
(r−r ′+1).(r−r ′+3)···(r+1)

I4 = J1
∑2 p

r=0

∑r
r ′=0

( 2p
r

) ( r
r ′

) (
1
2

)2 p−r
1

(
√

J1)r−r′
1

(
√

J2)
r′

3n
8π S(r+3)

(
3n

8π SN

)(r−1)/3
(J1 J2 J3)

(r−1)/6 ⊗ 2π 1.3.5···(r−r ′+1).1.3···(r−1)

2r r!

I5 = J4
∑2 p

r=0

∑r
r ′=0

(
2p
r

) (
r
r ′

) (
1
2

)2 p−r
1

(
√

J1)r′
1

(
√

J3)
r−r′

3n
8π S(r+3)

(
3n

8π SN

)(r−1)/3
(J1 J2 J3)

(r−1)/6 ⊗ 2π (r ′−1)·(r ′−3)···1
(r−r ′+1)·(r−r ′+3)···(r+1)

Figure 3. Magnon energy ratio versus number fraction plot for a
crystal of spin-1/2 atoms using equation (25). We have used B = 0.
Solid lines indicate the zeroth-order magnon energy spread in the
range ε

(0)

min(n) � ε(0)
n � ε(0)

max(n).

ε
(0)

n,lt = ε̄
(0)

n,lt y). In the long wavelength approximation, y lies in
the range u2/3 � y � [1 − (1 − u)5/3]/u. The zeroth-order
density of states ρ(ε(0)

n ) = dN (ε(0)
n )/dε(0)

n can be written as
ρ(ε(0)

n ) = g(y)/ε̄
(0)
n,lt , where g(y) = dN (y)/dy, dN(y) being

the number of states between y and y + dy. For a specific n
(not equal to 0 or 2N S), we get

WS(n, N)−1
∫ ymax

ymin

dy g(y) = 1,

ȳ = WS(n, N)−1
∫ ymax

ymin

dy yg(y) = 1.

(25)

4.3. General spin systems

Considering that ε
(0)
1,lt/ω

′
0 is proportional to m2 and also to y,

we write

gn(y) =
∑

n1,n2,...,nN

J (y; n1, n2, . . . , nN )∫ ymax

ymin
dy J (y; n1, n2, . . . , nN )

δn,
∑

i ni

(26)

7
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where the function J (y; n1, n2, . . . , nN ) is given by

J (y; n1, n2, . . . , nN ) =
∫ 5/3

0
dy ′

1 y ′1/2
1

×
∫ 5/3

0
dy ′′

1 y ′′1/2
1 · · · (n1 times) ⊗ · · ·

⊗
∫ 5/3

0
dy ′

N y ′1/2
N

∫ 5/3

0
dy ′′

N y ′′1/2
N · · · (nN times)

⊗
∏

i< j

[1 − δ(y ′
i − y ′

j)][1 − δ(y ′
i − y ′′

j )] · · ·

× [1 − δ(y ′′
i − y ′

j)][1 − δ(y ′′
i − y ′′

j )] · · ·
⊗ δny, ([y ′

1 + y ′′
1 + · · ·] + [y ′

2 + y ′′
2 + · · ·] + · · ·

+ [y ′
N + y ′′

N · · ·]). (27)

It is easy to verify that gn(y) in (26) satisfies the general
conditions (25). To calculate the denominator in (26), one
can replace the product containing the Dirac delta functions
by unity and simultaneously change the lower and upper
boundaries of y from ymin and ymax to 0 and 5/3. The same
maneuver must be applied while calculating the integral over
the numerator, J (y; n1, . . . , nN )F(y), where F(y) is any
arbitrary function. If we adopt this procedure, the general
density of states can be given the simple expression

gn(y) = ( 3
2 )n( 3

5 )3n/2

×
∑

n1,n2,...,nN

J (y; n1, n2, . . . , nN )δn,
∑

i ni . (28)

4.4. Thermal population distribution

In traditional magnon formalisms one normally deals with the
dispersion laws for the single-particle states. As the magnon
operators are like Bose operators, the Planck distribution
is invariably adopted in these treatments. The Planck
distribution for magnons amounts to including contributions
from unphysical states. To avoid this difficulty, we find
the distribution function for the physically acceptable states
corresponding to each permissible n. This is discussed below.

Considering the zeroth-order energy in equation (22), the
unnormalized thermal distribution function for all microstates
of n magnons is written from the grand canonical distribution
(see appendix C):

φ(0)(0) = 1,

φ(0)(n) = e−(μn+gμB Bn)/τ

∫ ymax(n)

ymin(n)

dy gn(y)e−ε̄
(0)
n,lt y/2Sτ ,

for 0 < n < 2N S

φ(0)(2N S) = e−(2N Sμ+2gμB N SB+ε̄
(0)
2N S,lt /2S)/τ ,

(29)

where μ is the chemical potential, τ = kBT , kB being the
Boltzmann constant and T the temperature in kelvin. Here we
have used the standard expression β = 1/τ as the number of
states is exceedingly large. If one inserts expression (28) for the
density of states in (29), removes the delta function containing
terms and accordingly adjusts the boundaries of y, one obtains

φ(0)(n) = WS(n, N)

(
φ(0)(1)

N

)n

(30)

where the distribution function for the one-magnon states is
given by

φ(0)(1) = 3
2 (

3
5 )3/2 Ne−(μ+gμB B)/τ

∫ 5/3

0
dy

√
ye−ε̄

(0)
1,lt y/2Sτ .

(31)

The sum of unnormalized distribution functions over
all possible numbers of magnons is now calculated. In
appendix D, it is shown that although for a general spin S the
explicit functional form of WS(n, N) is difficult to calculate
(except when S = 1/2), the sum in the denominator has
a simple appearance because of the properties of WS(n, N).
Using (D.4), we get the normalized magnon distribution

�(0)(n) = φ(0)(n)
∑2N S

n=0 φ(0)(n)
= WS(n, N)x (0)n

(
1 − x (0)

1 − x (0)2S+1

)N

(32)
where x (0) = φ(0)(1)/N .

5. Physical properties

5.1. Magnon number

We now calculate the zeroth-order thermal average of the total
number of magnons,

〈n〉(0)

T =
2N S∑

n=0

n�(0)(n). (33)

Using (D.5) from appendix D, we get

〈n〉(0)
T = N S[1 − BS(θ)] (34)

where θ = −S ln x (0) and BS(θ) is the Brillouin function.
Henceforth we will consider the chemical potential as μ = 0.
As τ/ J̄ → ∞, 〈n〉T → N S that shows all magnon states to be
equally populated. As τ/ J̄ → 0,

〈n〉(0)
T → 3

2

(
3

5

)3/2

N

(
τ

ε̄
(0)

1,lt

)3/2

�(3/2)e−gμB B/τ . (35)

One may consider the mean field approximation and adopt the
molecular (Weiss) field [11] Bmol = λ(0)M such that B =
Bapp + Bmol where Bapp is the applied magnetic field. Here we
note two important deviations from the standard formulation,
namely the absence of the Riemannian zeta function and the
introduction of the molecular field. The zeta function arises
from the mixing of the unphysical states that is inherent in
the infinite sums involved firstly in Planck distribution and
secondly in the infinite sum instead of the finite sum in (33).
Both λ(0) and M are dependent on temperature.

5.2. Molecular field constant

The so-called molecular field constant λ arises from the
additional stabilization caused by spin flips. The excess
stability can be understood from resonating valence bond
theory [9b, 9c, 9d, 9e]. It can also be interpreted as the
increase in the number of lines of force at the ‘up’ spin sites

8
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Figure 4. M (0)
s (T )/M (0)

s (0) versus T/Tc graph. The solid line
represents the theoretically calculated curve and dots are for
experimental data points for Ni crystal from [12].

due to a ‘down’ spin nearby, and vice versa. As the number
of spin flips changes with temperature, λ also changes. At an
extremely low temperature, there would be only a few spin flips
that are distributed away from each other. Hence λ becomes
linearly proportional to internal energy per spin flip, that is,
proportional to T . This is indeed found from the present
treatment. As τ/ J̄ → 0, we observe from (34)

λ(0) = τ

nB g2μ2
B(N S − 〈n〉T )

[
−0.4816

+ 3

2
ln

2Sτ

ε̄
(0)
1,lt

− ln
〈n〉T

N

]
− Bapp

M
. (36)

A careful analysis shows that λ(0) initially becomes more
or less proportional to T . As T increases towards Tc, λ(0)

increases more slowly with T . The values of λ(0) that
have been calculated from experimental �MS for nickel at
low temperature are given in [12]. Beyond T/Tc = 0.2,
equation (36) is no longer valid.

5.3. Magnetization

The magnetization is written as MS = nB gμB(N S − 〈n〉T )

where nB is the effective magnon number/f.u. Henceforth,
without the loss of any generality, we will take N as the total
number of spin centers per unit volume. As τ/ J̄ → ∞,
MS → 0. The saturation magnetization is given by MS(0) =
nB gμB N S. The magnetization reversal at low temperature
(τ/ J̄ � 1), �MS = MS(0) − MS(T ) = nB gμB〈n〉T , is found
as

�MS = 0.6178nucnB

(
gμB

vuc

)(
τ

ε̄
(0)
1,lt

)3/2

e−gμB B/τ (37)

where nuc is the number of spin centers per unit volume
and vuc is the unit cell volume. In equation (37), �MS is
(

gμB

vuc
)( τ

2S J̄
)3/2 times a multiplicative factor. The latter replaces

the factor 0.117 in [6], but this holds only for Type I solids. In
in [6] the factor 0.117 contains additionally the zeta function
ζ(3/2, 1) = 2.606 and the author makes an implicit use of
S = 1/2, z = 6, (corresponding γ = 1) and nucnB = 1, and
omits the exponential function.

Nickel is a fcc crystal (N = 9.140 × 1022). A statistical
mechanical treatment using the moment expansion method

Figure 5. Variation of 1/χ with T for ammonium vanadium (III)
fluorophosphates. The solid line is the theoretically determined curve
and dots represent the experimental data points.

gives J̄ = 2.54kBTc/z for S = 1/2 and z = 12 [13]. We
get J̄ = 11.51 meV for Tc = 631 K. The J̄ so determined is
actually related to the zeroth-order energy of Type I systems
through equation (24). Hence, for Type III crystals we write
J̄mod = J̄/γ .

One observes that for 0 � T/Tc � 0.2, λ(0) is indeed
given by λ(0) = 2900T/Tc for nickel. Using this result, we
compute MS(T )/MS(0) using equation (37). The calculated
plot of MS(T )/MS(0) versus T/Tc for nickel (S = 1/2) is
compared with the experimental data points [12] in figure 4,
for B = 0.

5.4. Susceptibility

The susceptibility is defined by χ = (dM/dBapp)Bapp=0. The
zeroth-order value is found as

χ(0)(T ) = C (0)(T )

T − θ(0)(T )
(38)

where

C (0)(T ) = N
nB g2μ2

B

kB
ξ(T )x (0)

0 ,

x (0)
0 = x (0)|Bapp=0,

ξ(T ) =
{

1

(1 − x (0)

0 )2
− (2S + 1)2x02S

0

(1 − x (0)2S+1

0 )2

}
,

θ (0)(T ) = λ(0)(T )C (0)(T ).

(39)

At a very high temperature (τ � z J̄), x (0)
0 ≈ 1 so

that C (0)(T ) ≈ C (0)(∞) = NnB g2μ2
BS(S + 1)/3kB, and

θ(0)(T ) ≈ θ(0)
c = λ(0)(∞)C (0)(∞). This yields the Curie–

Weiss law in zeroth order, χ(0)(T ) = C (0)(∞)/(T − θ(0)
c ).

Ammonium vanadate (III) fluorophosphate (S = 1) forms
an orthorhombic crystal with Tc = 2.7 K [14] and density
2.62 g cc−1. The molecular mass is 182.9, so that N =
8.56×1021. Using nB = 1, we get C (0)(∞) = 35.02×10−2g2

and λ(0)(∞) = 770.8g−2. Figure 5 shows the variation of
1/χ with temperature. The agreement with the experimental

9



J. Phys.: Condens. Matter 21 (2009) 336003 S N Datta and A Panda

results is achieved for g = 1.886, which is close to the estimate
1.85 [14].

At a very low temperature (τ/z J̄ → 0), x (0)
0 → 0.

Therefore ξ(T ) → 1, C (0)(T ) → 0, θ(0)(T ) → 0, and
χ(0) → C (0)(T )/T . It can be shown that

χ(0)(T ) = 3

2

(
3

5

)3/2

�(3/2)nB Ng2μ2
B

τ 1/2

ε̄
(0)3/2

1,lt

e−gμB B/τ . (40)

At temperatures in the middle range, χ(0)(T ) can be generally
expanded into the power series

χ(0)(T ) = C (0)(∞)

T

∞∑

l=0

al(Tc/T )l (41)

where a0 = 1. This formula was first derived by Domb and
Sykes [15a] and Rushbrooke and Wood [15b]. Furthermore,
following Padé approximant analysis by Gammel et al [16],
1/χ(T ) is seen to diverge as (T − Tc)

4/3 for cubic lattices
near the Curie point. Kouvel and Fischer also made a detailed
investigation of the magnetic behavior of nickel near its Curie
point and found χ(0)−1 = A[T − Tc]γ with γ = 1.35 ±
0.02 [17]. However, the integral in x (0)

0 is much less than
(2/3)(5/3)3/2 near T = Tc, and the argument of the Brillouin
function largely differs from μB(Bapp + λM)/τ .

One question that arises is why this behavior of χ emerges
from the zeroth-order treatment. The answer is that at a
temperature around the Curie point or lower, only a few
magnons are created as ε

(0)
1 is of the order of kBTc. The

interaction is negligibly feeble (the weak coupling limit), and
the magnetic behavior can be predicted from the zeroth-order
treatment.

5.5. Heat capacity

The zeroth-order internal energy U (0) is given by

U (0) =
{ 2N S−1∑

n=1

e−(μn+gμB Bn)/τ

×
∫ ymax(n)

ymin(n)

dy (ε̄(0)
n y)gn(y)e−ε̄

(0)
n,lt y/τ + ε̄

(0)
2N S

× e−(2N Sμ+2gμB N SB+ε̄
(0)
2N S,lt )/τ

}/ 2N S∑

n=0

Wn(n, N)x (0)n
. (42)

For μ = 0, and as N → ∞, we find

U (0) = 3

2

(
3

5

)3/2

ε̄
(0)
1,lt

1

x (0)

S2(x (0), N)

S1(x (0), N)
e−gμB(Bapp+λ(0) M)/τ

×
∫ 5/3

0
dy y3/2e−ε̄

(0)
1,lt y/τ (43)

where S1(x (0), N) and S2(x (0), N) are the standard sums as
given in appendix D. This implies

U (0) = 〈n〉(0)
T ε̄

(0)
1,lt

∫ 5/3
0 dy y3/2e−ε̄

(0)
1,lt y/τ

∫ 5/3
0 dy y1/2e−ε̄

(0)
1,lt y/τ

. (44)

In the low temperature limit (τ/ J̄ → 0), the internal energy
is proportional to T 5/2 as in the traditional treatment, but it is
also proportional to an exponential term:

U (0) = 3

2

(
3

5

)3/2

�(5/2)N ε̄
(0)
1,lt

(
τ

ε̄
(0)

1,lt

)5/2

e−gμB(Bapp+λ(0) M)/τ .

(45)
The ratio gμBγ (0)M/τ is of the order of unity (1.36 at T/Tc =
0.1 for nickel). The corresponding heat capacity (Cv) is

C (0)
v = 15

4

(
3

5

)3/2

�(5/2)NkB

(
τ

ε̄
(0)

1,lt

)3/2

×
[

1 + 2gμB(Bapp + λ(0)M)

5τ

]
e−gμB(Bapp+λ(0) M)/τ (46)

in approximate agreement with Bloch’s T 3/2 law [18]. The
agreement improves when (Bapp + gμBγ (0)M/τ) → 0.
The variation of U (0) and C (0)

v with temperature is given in
figures 6(a) and (b) for (NH4)[VPO4F] and nickel crystals.

In the high temperature limit (τ/ J̄ → ∞) we find U (0) =
N ε̄

(0)

1,lt and subsequently C (0)
v = 0. This may be rationalized

using the example of a transition metal complex where J̄ is
quite small as the metal centers are far apart from each other.
With the rise of temperature, all local (site) states become
almost equally populated, resulting in a net zero heat capacity.
Similarly in our formalism, all the (2S + 1)N magnon states
tend to become equally populated as T → ∞. The traditional
treatment, however, deals with an infinite number of states
which are mostly unphysical, and the high temperature limit
gives C (0)

v ∝ NkB. The present formalism obviously shows a
physically acceptable result.

5.6. Discussion

From observed data, we find the temperature dependence of
λ and 〈n〉T as shown in figure 7. The low temperature (T <

Tc) values for 〈n〉T and λ(0) have been obtained from �MS

data [12] and using equation (37). At low temperatures, λ(0)

almost equals λ. The higher temperature values have been
retrieved from the χ values [19] for nickel at T > Tc and the
generalized Curie–Weiss law χ = C(T )/(T − λ(T )C(T )).
We have approximated λ as λ = T d(1/χ)/dT − 1/χ ,
which holds at higher temperatures where C and λ become
nearly independent of temperature. The 〈n〉T values have been
calculated from 〈n〉T = �MS(T )/nB gμB for a magnetic field
of 12 kG. The effective magnon number nB equals 0.606 for
nickel (S = 1/2 system).

Figure 7 also shows 〈n〉T as a function of temperature.
It is obvious that 〈n〉T exhibits a big jump just after Tc. The
reason is that, as the Rushbrooke and Wood [15b] formula
implies, kBTc is the critical energy required for a spin flip. In
consequence, λ also exhibits a jump right after Tc, and then it
slowly increases to a saturation value (λ∞).

The quantity 〈n〉(0)
T has been calculated from equation (34)

for T > Tc, using the estimated λ values. Figure 7 reveals
that with a finite number of states the calculated 〈n〉(0)

T differs
greatly from the observed 〈n〉T .

10
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Figure 6. (a) The variation of zeroth-order internal energy (solid line) and heat capacity (dotted line) with temperature for ammonium
vanadium (III) fluorophosphates in zero field. We retained the same molecular specifications as discussed in [14] and assumed
gμBγ (0)M/τ ≈ 0. (b) Variation of zeroth-order internal energy (solid line) and heat capacity (dotted line) with temperature for nickel. We
have taken Bapp = 12 kG and the corresponding M values from experimental data given in [6]. The quantity γ (0) has been calculated from a
self-consistent procedure.

Figure 7. Variation with temperature of λ(0) (�) and magnon
population 〈n〉T (◦) for nickel. Both quantities have been calculated
from experimental data. The low temperature values for 〈n〉T and
λ(0) have been obtained from �MS data and using equation (37). The
high temperature values have been retrieved from measured
susceptibility.

6. Conclusions

We have recast the spin Hamiltonian in a form to take account
of the whole effect of Holstein–Primakoff transformations. We
consider only physically acceptable states which are finite in
number. The density of n-magnon states where n varies from
0 to 2N S has been found. The zeroth-order treatment has been
carried out using appropriate mathematical tools derived here
for a general S value.

One major outcome is the finding that the so-called
molecular field constant λ is dependent on temperature. It
increases from zero value (at absolute zero) as the temperature
increases, and at a very high temperature attains a saturation
value. This behavior is related to the increasing number of
spin flips with temperature. When T < Tc, the zeroth-order
treatment gives reasonably good results. For T > Tc, some of
the physical properties calculated at the zeroth order would be
quite bad.

We show in paper II [7] that at low temperatures, the first-
order correction to λ is exceedingly small and the correction to
〈n〉T involves T 5/2 and T 7/2 temperature dependences. Around
Tc, a T 4 dependent term becomes relevant, as pointed out by
Dyson [10]. The quantity 〈n〉T corrected through first order is
close to the experimental 〈n〉T in the higher temperature region.
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Appendix A. Magnon states

Let us consider a crystal of spin-1/2 sites, limiting the number
of site excitations to 0 and 1. There can be n down spins and
(N − n) up spins (n site excitations) or vice versa (N − n
excitations). The chosen states in the site mode are as follows:

n∏

s=1

|1S〉 = N−n/2

( n∏

s=1

N∑

k=1

eik·s b†
k

)
|0〉 (A.1)

and

N∏

s=n+1

|1S〉 = N−(N−n)/2

( n∏

s=n+1

N∑

k=1

eik·s b†
k

)
|0〉. (A.2)

The
( N

2

)
number of two-site states of type |1 j11 j2〉 = a†

j1
a†

j2
|0〉

form an orthonormal complete set. The two-magnon basis can
be chosen as

|1k1l〉 = b†
kb†

l |0〉 = N−1
∑

j1 �= j2

e−i(k· j1+l· j2)a†
j1

a†
j2
|0〉

+ N−1
∑

j

e−i(k+l)· j a†2
j |0〉 (A.3)

11
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where k and l are enumerated such that k < l. The last term in
equation (A.3) contributes unphysical states. This contribution
can be removed and the remaining part can be renormalized to
write

˜|1k1l〉 = 1

N

(
1 − 2

N

)−1/2 ∑

j1 �= j2

e−i(k· j1+l· j2)a†
j1

a†
j2
|0〉. (A.4)

It can be easily shown that with the choice k < l, the states
˜|1k1l〉 form an orthonormal complete set in the two-magnon
sector. Similarly, the three-magnon bases may be chosen as

˜|1k1l1m〉 = 1

(N3 − 6N2 + 12N)1/2

×
∑

j1 �= j2 �= j3

e−i(k· j1+l· j2+m· j3)a†
j1

a†
j2

a†
j3
|0〉. (A.5)

For S = 1, the two-magnon states can be chosen as either
|1k1l〉 for k < l, or as |2k〉. The three-magnon bases can be
written as

˜|1k1l1m〉 N

(N2 − 3N + 9N)1/2

×
{
|1k1l1m〉 − N−3/2

∑

j

e−i(k+l+m)· j a†3
j |0〉

}
. (A.6)

For other spins, the site states are of the form

|n j1n j2 · · ·〉 = N−n/2
N∏

j=1

( N∑

k=1

eik·s b†
k

)n j

|0〉 (A.7)

with 0 � n j � 2S, so that the magnon product states of type
|nk1 nk2 · · ·〉 with 0 � nk � 2S and

∑N
k=1 nk = n can form

a basis set in the n-magnon sector. It would be possible to
discard the unphysical parts and obtain the renormalized basic

states of type ˜|nk1 nk2 · · ·〉.
We further notice that because of the unphysical states, the

bases |nk1 nk2 · · ·〉 are in error of order (n/N), and the average
values calculated with these would deviate at order (n/N)2.

A.1. Symmetry aspects

The state ˜|1k1l〉 is constructed considering the positive z-axis
as the direction of the external magnetic field. In the absence
of any external magnetic field, inversion of the z-axis through

180◦ transforms ˜|1k1l〉 into the (N − 2) composite magnon

state ˜|0k0l〉 which can be written as

˜|0k0l〉 = 1√
N(N − 2)

∑

j1 �= j2

e−i(k· j1+l· j2)|1 j ′1 j ′′ · · · 0 j10 j2 · · ·〉.
(A.8)

We consider K = k + l, and an inversion of the z-axis
converts k, l and K into k̃, l̃ and K̃. The (N − 2) magnon

state that is complementary to ˜|1k1l〉 is written as

˜|1k11k2 · · · 0k0l · · ·〉
= N

∑

j ′ �= j ′′ �= j ′′′ �=···
( �= j1,�= j2···)

e−i(k1 · j ′+k2 · j ′′+k3 · j ′′′+···)|1′
j 1

′′
j · · · 0 j10 j2 · · ·〉

(A.9)

where N is the corresponding normalization constant. The
Fourier coefficients in (A.8) and (A.9) are obviously different.

Appendix B. Number of microstates

In view of appendix A for the choice of the magnon states,
where each magnon mode can have a maximum of 2S
magnons, the number of microstates with n magnons is given
by

WS(n, N) =
∑

N0,N1,...,N2S

N !
N0!N1! · · · N2S ! (B.1)

subject to the conditions

2S∑

p=0

Np = N, (B.2)

min(n,2S)∑

p=0

pNp = n. (B.3)

In the above, Np is the number of modes each of which is
occupied by p magnons.

Based on the definition (B.1), the properties of WS

functions are as follows.
(i) Symmetry:

WS(n, N) = WS(2N S − n, N). (B.4)

(ii) Boundary values:

WS(0, N) = 1;
WS(1, N) = N;

WS(2, N) =
{

N(N − 1)/2 for S = 1/2,

N(N + 1)/2 for S = 1, 3/2, . . .;

WS(3, N) ∼ N3/3!, etc.

(B.5)

These are obvious from (B.1).
(iii) Sum rule:

2N S∑

n=0

WS(n, N) = (2S + 1)N . (B.6)

The proof of this relation relies on the fact that summation
over n removes the restriction (B.3) from the sum, and on the
multinomial theorem.
(iv) Regression:

WS(n, N) =
min(n,2S)∑

p=0

WS(n − p, N − 1). (B.7)

To show that the regression is consistent with the sum rule, one
can write
2S(N−1)∑

n=0

WS(n, N) = (2S + 1)

2S(N−1)∑

p=0

WS(n, N − 1)

−
2S∑

p=1

pWS(2S(N − 2) + p, N − 1)

and

2N S∑

n=2S(N−1)+1

WS(n, N) =
2S∑

p=1

pWS(2S(N − 2) + p, N − 1)

12



J. Phys.: Condens. Matter 21 (2009) 336003 S N Datta and A Panda

so that

2N S∑

n=0

WS(n, N) = (2S + 1)

2S(N−1)∑

n=0

WS(n, N − 1).

On iteration, one retrieves the sum rule (B.6).
(v) Average

n

N
=

min(n,2S)∑

p=1

pWS(n − p, N − 1)

WS(n, N)
. (B.8)

The proof is based on expanding pWS(n − p, N − 1) and
using (B.3).

Appendix C. Thermal distribution

We write (B.1) in a slightly different form

WS(n, N) =
∑

{Np}
ω({Np}) (C.1)

where ω({Np}) = N !/ ∏min(n,2S)

p=0 Np !, subject to the
conditions (B.2) and (B.3).

Although the magnon operators are Bose operators, they
are not associated with an infinity of states in our treatment.
Thus the probability distribution differs from the Planck
distribution. We require to maximize ω({Np}) for variation of
Np subject to the conditions (B.2) and (B.3). Using Lagrange’s
undetermined multiplier γ and μ, and for arbitrary variations
dNp , we get

Np = e−γ−μp . (C.2)

This is valid for the maximum component ω({Np}) for any
n. Each set of p values has been considered separately. A
consideration of temperature will enter later.

Furthermore, while n pj is the number of magnons of spin
p and in state j with energy εpj , one may observe the relations

min(n,2S)∑

p=0

n pj = Np,

min(n,2S)∑

p=0

n pjεpj = E p, (C.3)

and

ω̃p({n pj}) = Np !∏
j n pj ! .

The ω̃p terms constitute the components of maximum
ω({Np}). To create the temperature dependence, we require
ω̃p({n pj}) to be maximum for a fixed E p. Thus

d ln ω̃p({n pj}) = 0, dE p = 0. (C.4)

Using Lagrange’s undetermined multiplier β , we get for
arbitrary variation of n pj , the form n pj = Np exp[−βεpj].
This finally yields the distribution

n pi

N
= exp(−μp − βεpi)∑min(n,2S)

q=0

∑
j∈q exp(−μq − βεq j)

. (C.5)

In the derivation given here, we have used the conditions
dE p = 0 for each p that is stronger than the normally used
condition dE = 0 where E = ∑min(n,2S)

p=0 E p.

At first, the largest component of WS(n, N) is found for
fixed n and N . This yields the infinite temperature result
where all the states are a priori equally probable. For each
type of spin states (for each site or for each magnon mode),
the probability function for a specific Np is maximized subject
to the constraint of constant E p. So each type of spin state
constitutes a canonical ensemble. The final result is, of course,
a grand canonical distribution function considering all types
(p values). It now becomes trivially simple to show that
β = 1/kBT and μ is the chemical potential.

Appendix D. Use of WS(n,N) in sums

Here we inspect two types of summation involving the number
of microstates for any general spin S, although the exact
analytical function WS(n, N) is not known except for S = 1/2.
These sums are often encountered in treatments of solid state
physics. The sums considered are

S1(x, N) =
2N S∑

n=0

xnWS(n, N) (D.1)

and

S2(x, N) =
2N S∑

n=0

nxnWS(n, N). (D.2)

Of course, S2(x, N) = x (dS1 (x, N)/dx).
Using the regression property (B.7) we find

S1(x, N) =
(

1 − x2S+1

1 − x

)
S1(x, N − 1)

+
2S∑

n=1

(
1 − x2S+1−n

1 − x

)
x2(N−1)S+n

× WS(2(N − 1)S + n, N − 1). (D.3)

As N → ∞, the second term on the right-hand side of (D.3)
can be neglected. Also, S1(x, 1) = (1 − x2S+1)/(1 − x).
Therefore, for a general spin S, the N → ∞ limit of S1 is
given by

S1(x, N) =
(

1 − x2S+1

1 − x

)N

. (D.4)

Using this S1, one finds the large N behavior

S2(x, N) = Nx
(1 − x2S+1)N−1

(1 − x)N+1
(2Sx2S+1

− (2S + 1)x2S + 1). (D.5)
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